
CHEM1612 Problem Sheet 6 (Week 7)

Work through the ChemCAL module "Weak Acids and Bases"

- 1. The pK_a of acetic acid is 4.76. Calculate the pH of the following solutions:
 - (a) 0.2 M acetic acid
 - (b) 0.2 M sodium acetate
 - (c) A buffer that is 0.2 M in acetic acid and 0.2 M in sodium acetate
- 2. Histidine is an amino acid of importance in maintaining the catalytic activity of proteolytic (protein cleaving) enzymes.

The p K_1 , p K_2 and p K_3 values for histidine are 1.81, 6.05 and 9.15. These values correspond to the α -COOH group, the imidazole ring and the α -NH₃⁺ group respectively.

In a buffer solution where $pH = pK_a$, the concentration of the acid and its conjugate base are equal. Give the constitutional formulas of the acid species and its conjugate base associated with the following pK_a values.

- (a) 1.81
- (b) 6.05
- (c) 9.15
- 3. A buffer at physiological pH of 7.40 is required. What quantities of 0.10 M HPO_4^{2-} and $H_2PO_4^-$ are required to make 1.0 L of this buffer? (p K_a ($H_2PO_4^-$) = 7.20)
- 4. The pH of a 0.6 M solution of a weak acid is 4.0. What percentage of the acid has ionised?
- 5. In a titration experiment, 50.0 mL of 0.100 M acetic acid (p $K_a = 4.76$) is reacted with NaOH.
 - (a) Calculate the pH when the following quantities of 0.100 M NaOH have been added:
 - (i) 0.0 mL (initial pH)
 - (ii) 25.0 mL
 - (iii) 45.0 mL
 - (iv) 50.0 mL
 - (v) 55.0 mL
 - (vi) 75.0 mL
 - (b) Using the calculated values, plot the pH curve for the titration.
 - (c) Compare your curve with that obtained for Q7 on Sheet 5.